73 research outputs found

    High-Frequency Oscillations in Distributed Neural Networks Reveal the Dynamics of Human Decision Making

    Get PDF
    We examine the relative timing of numerous brain regions involved in human decisions that are based on external criteria, learned information, personal preferences, or unconstrained internal considerations. Using magnetoencephalography (MEG) and advanced signal analysis techniques, we were able to non-invasively reconstruct oscillations of distributed neural networks in the high-gamma frequency band (60–150 Hz). The time course of the observed neural activity suggested that two-alternative forced choice tasks are processed in four overlapping stages: processing of sensory input, option evaluation, intention formation, and action execution. Visual areas are activated first, and show recurring activations throughout the entire decision process. The temporo-occipital junction and the intraparietal sulcus are active during evaluation of external values of the options, 250–500 ms after stimulus presentation. Simultaneously, personal preference is mediated by cortical midline structures. Subsequently, the posterior parietal and superior occipital cortices appear to encode intention, with different subregions being responsible for different types of choice. The cerebellum and inferior parietal cortex are recruited for internal generation of decisions and actions, when all options have the same value. Action execution was accompanied by activation peaks in the contralateral motor cortex. These results suggest that high-gamma oscillations as recorded by MEG allow a reliable reconstruction of decision processes with excellent spatiotemporal resolution

    Across-subjects classification of stimulus modality from human MEG high frequency activity

    Get PDF
    Single-trial analyses have the potential to uncover meaningful brain dynamics that are obscured when averaging across trials. However, low signal-to-noise ratio (SNR) can impede the use of single-trial analyses and decoding methods. In this study, we investigate the applicability of a single-trial approach to decode stimulus modality from magnetoencephalographic (MEG) high frequency activity. In order to classify the auditory versus visual presentation of words, we combine beamformer source reconstruction with the random forest classification method. To enable group level inference, the classification is embedded in an across-subjects framework. We show that single-trial gamma SNR allows for good classification performance (accuracy across subjects: 66.44%). This implies that the characteristics of high frequency activity have a high consistency across trials and subjects. The random forest classifier assigned informational value to activity in both auditory and visual cortex with high spatial specificity. Across time, gamma power was most informative during stimulus presentation. Among all frequency bands, the 75 Hz to 95 Hz band was the most informative frequency band in visual as well as in auditory areas. Especially in visual areas, a broad range of gamma frequencies (55 Hz to 125 Hz) contributed to the successful classification. Thus, we demonstrate the feasibility of single-trial approaches for decoding the stimulus modality across subjects from high frequency activity and describe the discriminative gamma activity in time, frequency, and space

    Exploring the Electrophysiological Correlates of the Default-Mode Network with Intracerebral EEG

    Get PDF
    While functional imaging studies allow for a precise spatial characterization of resting state networks, their neural correlates and thereby their fine-scale temporal dynamics remain elusive. A full understanding of the mechanisms at play requires input from electrophysiological studies. Here, we discuss human and non-human primate electrophysiological data that explore the neural correlates of the default-mode network. Beyond the promising findings obtained with non-invasive approaches, emerging evidence suggests that invasive recordings in humans will be crucial in order to elucidate the neural correlates of the brain's default-mode function. In particular, we contend that stereotactic-electroencephalography, which consists of implanting multiple depth electrodes for pre-surgical evaluation in drug-resistant epilepsy, is particularly suited for this endeavor. We support this view by providing rare data from depth recordings in human posterior cingulate cortex and medial prefrontal cortex that show transient neural deactivation during task-engagement

    NUTMEG:Open Source Software for M/EEG Source Reconstruction

    Get PDF
    Neurodynamic Utility Toolbox for Magnetoencephalo- and Electroencephalography (NUTMEG) is an open-source MATLAB-based toolbox for the analysis and reconstruction of magnetoencephalography/electroencephalography data in source space. NUTMEG includes a variety of options for the user in data import, preprocessing, source reconstruction, and functional connectivity. A group analysis toolbox allows the user to run a variety of inferential statistics on their data in an easy-to-use GUI-driven format. Importantly, NUTMEG features an interactive five-dimensional data visualization platform. A key feature of NUTMEG is the availability of a large menu of interference cancelation and source reconstruction algorithms. Each NUTMEG operation acts as a stand-alone MATLAB function, allowing the package to be easily adaptable and scripted for the more advanced user for interoperability with other software toolboxes. Therefore, NUTMEG enables a wide range of users access to a complete “sensor-to- source-statistics” analysis pipeline

    Category-Specific Visual Responses: An Intracranial Study Comparing Gamma, Beta, Alpha, and ERP Response Selectivity

    Get PDF
    The specificity of neural responses to visual objects is a major topic in visual neuroscience. In humans, functional magnetic resonance imaging (fMRI) studies have identified several regions of the occipital and temporal lobe that appear specific to faces, letter strings, scenes, or tools. Direct electrophysiological recordings in the visual cortical areas of epileptic patients have largely confirmed this modular organization, using either single-neuron peri-stimulus time-histogram or intracerebral event-related potentials (iERP). In parallel, a new research stream has emerged using high-frequency gamma-band activity (50–150 Hz) (GBR) and low-frequency alpha/beta activity (8–24 Hz) (ABR) to map functional networks in humans. An obvious question is now whether the functional organization of the visual cortex revealed by fMRI, ERP, GBR, and ABR coincide. We used direct intracerebral recordings in 18 epileptic patients to directly compare GBR, ABR, and ERP elicited by the presentation of seven major visual object categories (faces, scenes, houses, consonants, pseudowords, tools, and animals), in relation to previous fMRI studies. Remarkably both GBR and iERP showed strong category-specificity that was in many cases sufficient to infer stimulus object category from the neural response at single-trial level. However, we also found a strong discrepancy between the selectivity of GBR, ABR, and ERP with less than 10% of spatial overlap between sites eliciting the same category-specificity. Overall, we found that selective neural responses to visual objects were broadly distributed in the brain with a prominent spatial cluster located in the posterior temporal cortex. Moreover, the different neural markers (GBR, ABR, and iERP) that elicit selectivity toward specific visual object categories present little spatial overlap suggesting that the information content of each marker can uniquely characterize high-level visual information in the brain

    Comparison of beamformer implementations for MEG source localization

    Get PDF
    Beamformers are applied for estimating spatiotemporal characteristics of neuronal sources underlying measured MEG/EEG signals. Several MEG analysis toolboxes include an implementation of a linearly constrained minimum-variance (LCMV) beamformer. However, differences in implementations and in their results complicate the selection and application of beamformers and may hinder their wider adoption in research and clinical use. Additionally, combinations of different MEG sensor types (such as magnetometers and planar gradiometers) and application of preprocessing methods for interference suppression, such as signal space separation (SSS), can affect the results in different ways for different implementations. So far, a systematic evaluation of the different implementations has not been performed. Here, we compared the localization performance of the LCMV beamformer pipelines in four widely used open-source toolboxes (MNE-Python, FieldTrip, DAiSS (SPM12), and Brainstorm) using datasets both with and without SSS interference suppression. We analyzed MEG data that were i) simulated, ii) recorded from a static and moving phantom, and iii) recorded from a healthy volunteer receiving auditory, visual, and somatosensory stimulation. We also investigated the effects of SSS and the combination of the magnetometer and gradiometer signals. We quantified how localization error and point-spread volume vary with the signal-to-noise ratio (SNR) in all four toolboxes. When applied carefully to MEG data with a typical SNR (3-15 dB), all four toolboxes localized the sources reliably; however, they differed in their sensitivity to preprocessing parameters. As expected, localizations were highly unreliable at very low SNR, but we found high localization error also at very high SNRs for the first three toolboxes while Brainstorm showed greater robustness but with lower spatial resolution. We also found that the SNR improvement offered by SSS led to more accurate localization.Peer reviewe

    Spatiotemporal Dynamics of Word Processing in the Human Brain

    Get PDF
    We examined the spatiotemporal dynamics of word processing by recording the electrocorticogram (ECoG) from the lateral frontotemporal cortex of neurosurgical patients chronically implanted with subdural electrode grids. Subjects engaged in a target detection task where proper names served as infrequent targets embedded in a stream of task-irrelevant verbs and nonwords. Verbs described actions related to the hand (e.g, throw) or mouth (e.g., blow), while unintelligible nonwords were sounds which matched the verbs in duration, intensity, temporal modulation, and power spectrum. Complex oscillatory dynamics were observed in the delta, theta, alpha, beta, low, and high gamma (HG) bands in response to presentation of all stimulus types. HG activity (80–200 Hz) in the ECoG tracked the spatiotemporal dynamics of word processing and identified a network of cortical structures involved in early word processing. HG was used to determine the relative onset, peak, and offset times of local cortical activation during word processing. Listening to verbs compared to nonwords sequentially activates first the posterior superior temporal gyrus (post-STG), then the middle superior temporal gyrus (mid-STG), followed by the superior temporal sulcus (STS). We also observed strong phase-locking between pairs of electrodes in the theta band, with weaker phase-locking occurring in the delta, alpha, and beta frequency ranges. These results provide details on the first few hundred milliseconds of the spatiotemporal evolution of cortical activity during word processing and provide evidence consistent with the hypothesis that an oscillatory hierarchy coordinates the flow of information between distinct cortical regions during goal-directed behavior

    Imaging Neuroscience opening editorial

    Get PDF
    In this editorial we introduce a new non-profit open access journal, Imaging Neuroscience. In April 2023, editors of the journals NeuroImage and NeuroImage:Reports resigned, and a month later launched Imaging Neuroscience. NeuroImage had long been the leading journal in the field of neuroimaging. While the move to fully open access in 2020 represented a positive step toward modern academic practices, the publication fee was set to a level that the editors found unethical and unsustainable. The publisher of NeuroImage, Elsevier, was unwilling to reduce the fee after much discussion. This led us to launch Imaging Neuroscience with MIT Press, intended to replace NeuroImage as our field’s leading journal, but with greater control by the neuroimaging academic community over publication fees and adoption of modern and ethical publishing practices

    Reconstructing Cortical Dynamics with Magnetoencephalography

    No full text
    The dynamics of neural information processing are complicated, and determining the sequence and mode of activation is equally important to determining which areas activate. Magnetoencephalography (MEG) and electroencephalography (EEG) noninvasively measure the electromagnetic fields directly generated by neuronal currents in the human brain. The potential to accurately localize these signals has emerged with the advent of dense, whole-head sensor arrays. Adaptive spatial filtering techniques such as beamforming are often used reconstruct the sources of MEG/EEG activity. I have developed extensions to apply beamforming to more experimental paradigms as well as a method for more accurate validation with intracranial EEG.Beamformers poorly resolve brain sources that are strongly correlated temporally with one another, as might be expected for an auditory experiment. I presented a method to reject the contribution of potentially interfering sources in a user-defined suppression region while allowing for source reconstruction at other specified regions. Performance of the algorithm was validated with data from simulations and an auditory MEG experiment.Few methods exist for localizing spectral power changes with MEG. I described a novel method that uses beamformers optimized for time-frequency source reconstruction from MEG data. The performance of the method was demonstrated with simulated sources and was also applied to real MEG data from a finger movement task. Modulations in both the beta band and, importantly, the high gamma band were revealed in sensorimotor cortex and found to be statistically significant across subjects. These results were additionally validated by intracranial EEG data from two epilepsy patients. Another compelling finding was high frequency activity (30-300 Hz) in the cerebellum.Finally, while intracranial recordings are considered the gold standard for validating noninvasive measurements, often electrode locations are not precisely known. One common method, CT-MRI coregistration, may result in a localization error of more than 10 mm. To address this, I developed a procedure to link preoperative MRIs, surgical photographs, and postimplant X-rays with projective transforms
    corecore